The Human DnaJ Homologue dj2 Facilitates Mitochondrial Protein Import and Luciferase Refolding
نویسندگان
چکیده
DnaJ homologues function in cooperation with hsp70 family members in various cellular processes including intracellular protein trafficking and folding. Three human DnaJ homologues present in the cytosol have been identified: dj1 (hsp40/hdj-1), dj2 (HSDJ/hdj-2), and neuronal tissue-specific hsj1. dj1 is thought to be engaged in folding of nascent polypeptides, whereas functions of the other DnaJ homologues remain to be elucidated. To investigate roles of dj2 and dj1, we developed a system of chaperone depletion from and readdition to rabbit reticulocyte lysates. Using this system, we found that heat shock cognate 70 protein (hsc70) and dj2, but not dj1, are involved in mitochondrial import of preornithine transcarbamylase. Bacterial DnaJ could replace mammalian dj2 in mitochondrial protein import. We also tested the effects of these DnaJ homologues on folding of guanidine-denatured firefly luciferase. Unexpectedly, dj2, but not dj1, together with hsc70 refolded the protein efficiently. We propose that dj2 is the functional partner DnaJ homologue of hsc70 in the mammalian cytosol. Bacterial DnaJ protein could replace mammalian dj2 in the refolding of luciferase. Thus, the cytosolic chaperone system for mitochondrial protein import and for protein folding is highly conserved, involving DnaK and DnaJ in bacteria, Ssa1-4p and Ydj1p in yeast, and hsc70 and dj2 in mammals.
منابع مشابه
Interaction of mitochondrial presequences with DnaK and mitochondrial hsp70.
Mitochondrial heat shock protein 70 (mt-hsp70) functions as a molecular chaperone in mitochondrial biogenesis. The chaperone in co-operation with its co-proteins acts as a translocation motor pulling the mitochondrial precursor into the matrix. Mt-hsp70s are highly conserved when compared to the bacterial hsp70 homologue, DnaK. Here we have used DnaK as a model to study the interaction of mitoc...
متن کاملA type I DnaJ homolog, DjA1, regulates androgen receptor signaling and spermatogenesis.
Two type I DnaJ homologs DjA1 (DNAJA1; dj2, HSDJ/hdj-2, rdj1) and DjA2 (DNAJA2; dj3, rdj2) work similarly as a cochaperone of Hsp70s in protein folding and mitochondrial protein import in vitro. To study the in vivo role of DjA1, we generated DjA1-mutant mice. Surprisingly, loss of DjA1 in mice led to severe defects in spermatogenesis that involve aberrant androgen signaling. Transplantation ex...
متن کاملMdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding.
Mdj1p, a novel member of the DnaJ family, is a heat shock protein that is associated with the inner membrane of mitochondria of Saccharomyces cerevisiae. Disruption of the MDJ1 gene resulted in a petite phenotype, loss of mitochondrial DNA, and inviability at 37 degrees C. Import of precursor proteins was not affected by a lack of Mdj1p, but folding of newly imported proteins was markedly impai...
متن کاملInteraction of the human DnaJ homologue, HSJ1b with the 90 kDa heat shock protein, Hsp90.
The 90 kDa heat shock protein (Hsp90) is a major cytoplasmic molecular chaperone associating with numerous other proteins. Both genetic and in vitro refolding experiments using reticulocyte lysate have suggested a functional interaction of Hsp90 with yeast human homologues of E. coli DnaJ. Here we present direct evidence using surface plasmon resonance that Hsp90 and the human DnaJ homologue, H...
متن کاملThe diverse members of the mammalian HSP70 machine show distinct chaperone-like activities.
Humans contain many HSP (heat-shock protein) 70/HSPA- and HSP40/DNAJ-encoding genes and most of the corresponding proteins are localized in the cytosol. To test for possible functional differences and/or substrate specificity, we assessed the effect of overexpression of each of these HSPs on refolding of heat-denatured luciferase and on the suppression of aggregation of a non-foldable polyQ (po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 139 شماره
صفحات -
تاریخ انتشار 1997